Orally Administered Mangoral (Manganese Chloride ACCA) Tetrahydrate) And Intravenously Administered Gadobenate Dimeglumine For MRI Of Colorectal Liver Metastases - An Intraindividual Comparison

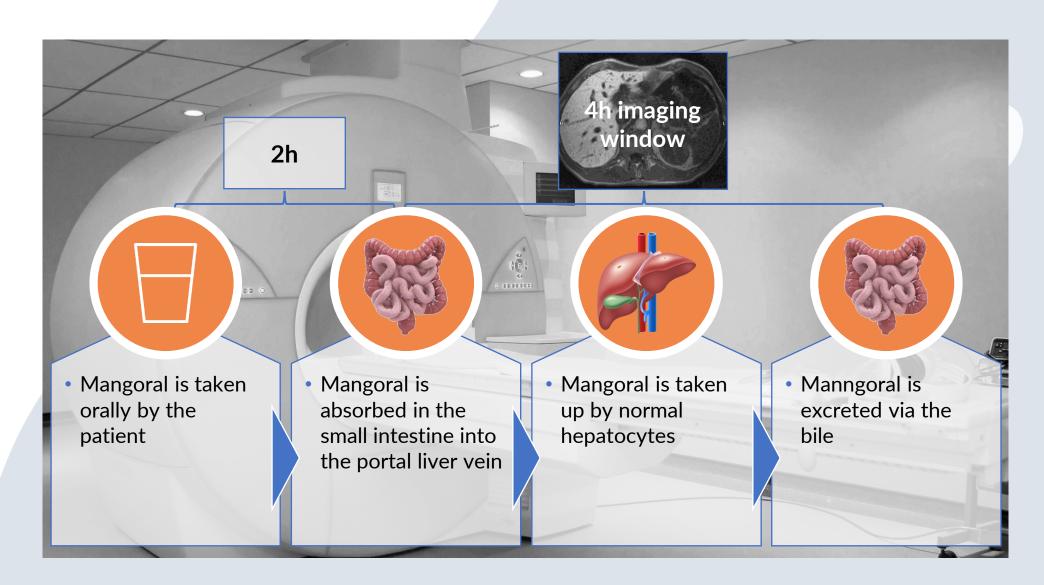
K. Shamsi¹, T. B. Brismar², N. Kartalis², G. T. Sica³, P. Ramchandani⁴, A. G. Gilet⁵, N. Gupta⁶, C. Bjartmar⁷

¹Conshohocken, PA, ²Stockholm, SWEDEN, ³New York, NY, ⁴Narberth, PA, ⁵Chappaqua, NY, ⁶Bryn Mawr, PA, ⁷Malmo, SWEDEN.

Disclosures

Kohkan Shamsi works as Consultant for Ascelia Pharma Carl Bjartmar is an employee of Ascelia pharma

Mangoral – manganese-based oral liver specific MRI contrast agent


- Manganese (II) chloride tetrahydrate a natural trace element
 - Also contains two absorption promoters, L-Alanine and Vitamin D3
 - Powder is mixed with 200 mL of water and is taken orally
- Phase II data has shown improved efficacy of Mangoral compared to unenhanced MRI and good safety profile
- It is being developed as liver contrast agent in patients with impaired renal function – phase III study is ongoing

Mangoral - Mode of action

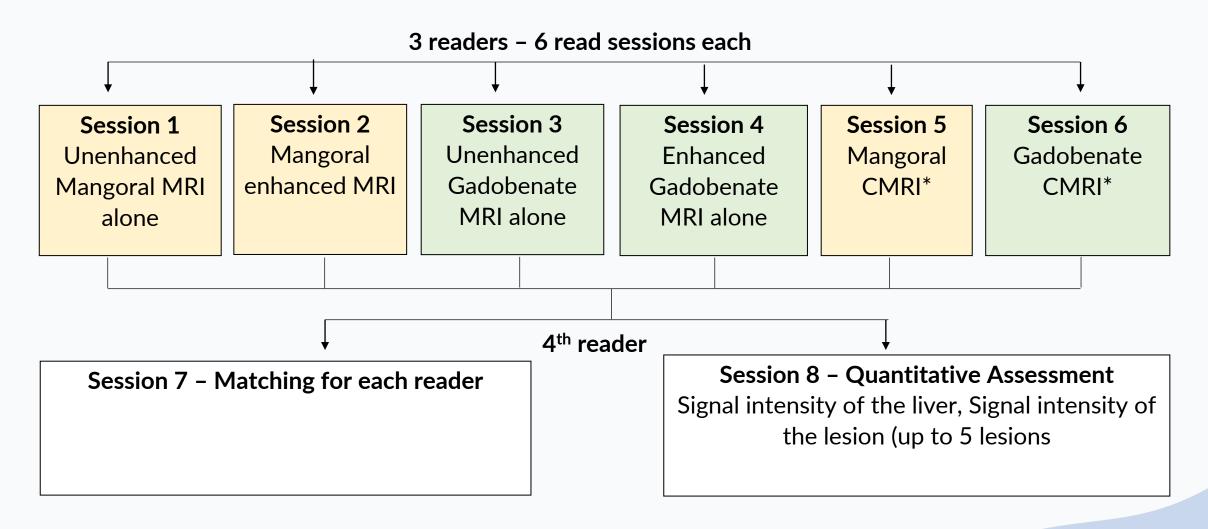
Background of the study

- A single center open label randomized cross-over phase III study was performed to evaluate the diagnostic quality of Mangoral-enhanced MRI (MMRI) in patients with liver metastases in comparison to Gadobenate dimeglumine-enhanced MRI (GMRI)*
- The study was performed in Karolinska Institute, Sweden in 2007
- Twenty patients with known liver metastasis received both Mangoral and Gadolinium BOPTA.
 - Mangoral dose: 1600 mg; Gadolinium BOPTA dose: 0.1 mmol/kg of body weight
- MR imaging was performed with 1.5T machine within 1 wk of each MRI
- Diagnosis of metastasis was confirmed by histopathology, other imaging modalities or by clinical consensus
- Intra-individual efficacy assessments were performed at the study site by consensus read by two readers

Purpose of current study

To confirm and compare diagnostic efficacy of MMRI and GMRI assessed by 3 independent readers

Methods and materials of the re-read



- Three independent radiologists with > 5 years of liver MRI experience evaluated unenhanced and enhanced T1 and T2-weighted images
- Efficacy parameters
 - number and size of the detected lesions
 - lesion border delineation using 4-point scale (poor, moderate, good excellent)
 - lesion contrast compared to liver using a 4-point scale. (poor, moderate, good excellent)
 - Quantitative assessments
- A fourth radiologist tracked and matched the lesions identified by each of the three readers and performed additional quantitative assessments
- Comparative efficacy analyses were performed between
 - Unenhanced MRI and enhanced MMRI and GMRI
 - MMRI and GMRI

Descriptive statistics and CI were used to assess the differences.

Read methodology

^{*}CMRI: combined MRI (unenhanced + enhanced MRI)

Results: number of lesions

Higher number of lesions were detected by Mangoral enhanced MRI compared to unenhanced MRI for all 3 readers

Number of lesions detected by MMRI and unenhanced MRI					
Reader		Unenhanced	Mangoral		
	Statistic		CMRI		
1	n	20	20		
	Mean (SD)	1.85 (1.226)	2.55 (1.538)		
	Median	1.50	2.00		
	Min, Max	0.00, 5.00	1.00, 6.00		
	95% CI	1.28, 2.42	1.83, 3.27		
2	n	20	20		
	Mean (SD)	1.85 (0.988)	2.15 (1.424)		
	Median	1.50	2.00		
	Min, Max	1.00, 4.00	0.00, 6.00		
	95% CI	1.39, 2.31	1.48, 2.82		
3	n	20	20		
	Mean (SD)	1.90 (1.165)	3.15 (1.954)		
	Median	1.50	3.00		
	Min, Max	0.00, 4.00	0.00, 8.00		
	95% CI	1.35, 2.45	2.24, 4.06		

Results: number of lesions

A higher number of liver lesions were detected by MMRI compared to GMRI by all 3 readers with overlapping 95%-confidence intervals

Number of lesions detected by MMRI and GMRI					
Reader	Statistic	MMRI	GMRI		
1	n	20	20		
	Mean (SD)	2.55 (1.538)	2.40 (1.847)		
	Median	2.00	2.00		
	Min, Max	1.00, 6.00	0.00, 8.00		
	95% CI	1.83, 3.27	1.54, 3.26		
2	n	20	20		
	Mean (SD)	2.15 (1.424)	1.60 (1.231)		
	Median	2.00	1.00		
	Min, Max	0.00, 6.00	0.00, 4.00		
	95% CI	1.48, 2.82	1.02, 2.18		
3	n	20	20		
	Mean (SD)	3.15 (1.954)	2.65 (1.694)		
	Median	3.00	2.00		
	Min, Max	0.00, 8.00	0.00, 6.00		

Results: size of smallest lesions

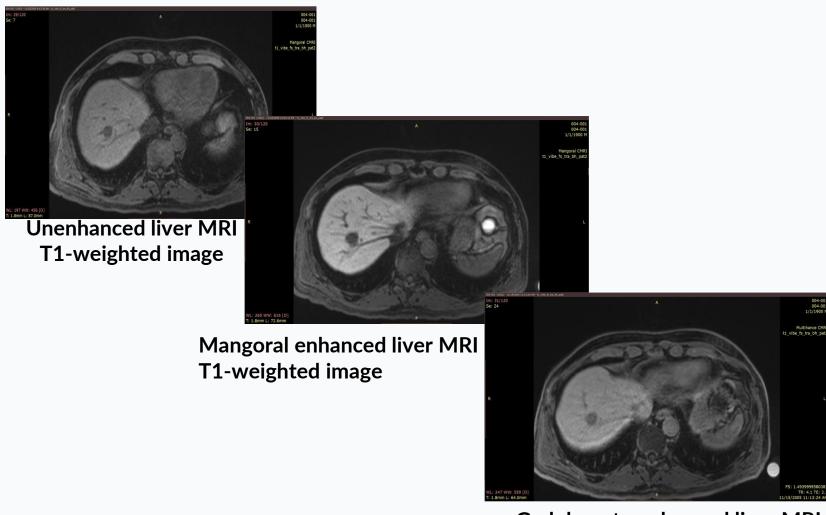
Mean size of smallest lesion detected by MMRI was smaller for 3 readers compared to GMRI with overlapping 95%-confidence intervals

Size of smallest lesion				
Reader	Statistic	MMRI	GMRI	
1	n	20	20	
	Mean (SD)	14.00 (9.096)	14.45 (8.841)	
	Median	11.50	11.50	
	Min, Max	4.00, 40.00	5.00, 40.00	
	95% CI	9.74, 18.26	10.31, 18.59	
2	n	20	17	
	Mean (SD)	18.35 (9.184)	19.35 (9.027)	
	Median	16.50	15.00	
	Min, Max	9.00, 42.00	9.00, 38.00	
	95% CI	14.05, 22.65	14.71, 23.99	
3	n*	19	18	
	Mean (SD)	12.21 (10.250)	14.78 (11.128)	
	Median	12.00	11.50	
	Min, Max	1.00, 42.00	4.00, 39.00	
	95% CI	7.27, 17.15	9.24, 20.31	

Results: lesion border delineation

Two out of 3 readers showed higher scores for lesion delineation for MMRI compared to GMRI with overlapping CIs

MMRI vs. GMRI of Lesion Border Delineation					
Reader	Statistic	MMRI	GMRI		
1	n	20	19		
	Mean (SD)	6.40 (3.926)	7.00 (6.164)		
	Median	5.00	5.00		
	Min, Max	1.00, 14.00	1.00, 26.00		
	95% CI	4.56, 8.24	4.03, 9.97		
	n*	19	17		
2	Mean (SD)	5.95 (4.327)	4.41 (3.144)		
	Median	4.00	3.00		
	Min, Max	1.00, 15.00	1.00, 12.00		
	95% CI	3.86, 8.03	2.80, 6.03		
3	n*	19	19		
	Mean (SD)	9.37 (6.265)	7.79 (5.192)		
	Median	8.00	6.00		
	Min, Max	2.00, 28.00	1.00, 18.00		
	95% CI	6.35, 12.39	5.29, 10.29		



Signal-to-noise ratio, Lesion-to-liver contrast was similar for MMRI and GMRI

Gadobenate enhanced liver MRI T1-weighted image – hepatocyte phase

Gadobenate enhanced liver MRI T1-weighted image – hepatocyte phase

Conclusions and clinical relevance

- Orally administered mangoral enhanced MRI showed similar efficacy in terms of lesion detection, lesion visualization, and lesion delineation of liver metastases as compared to intravenous gadobenate enhanced MRI
- Manganese based contrast agent could be a valuable alternative for MRI of the liver in patients in whom use of gadolinium agents is restricted or contra-indicated

Thank you.